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Abstract

Latent variable methods, such as PLCA (Probabilistic Latent
Component Analysis) have been successfully used for analysis
of non-negative signal representations. In this paper, we for-
mulate PLCS (Probabilistic Latent Component Segmentation),
which models each time frame of a spectrogram as a spec-
tral distribution. Given the signal spectrogram, the segmen-
tation boundaries are estimated using a maximum-likelihood
approach. For an efficient solution, the algorithm imposes a
hard constraint that each segment is modelled by a single latent
component. The hard constraint facilitates the solution of ML
boundary estimation using dynamic programming. The PLCS
framework does not impose a parametric assumption unlike ear-
lier ML segmentation techniques. PLCS can be naturally ex-
tended to model coarticulation between successive phones. Ex-
periments on the TIMIT corpus show that the proposed tech-
nique is promising compared to most state of the art speech
segmentation algorithms.

Index Terms:Speech segmentation, PLCA, Spectrograms,
Coarticulation, Dynamic Programming

1. Introduction

Automatic speech segmentation is a classical signal pro-
cessing problem which is important for several applications. An
automated approach to segmentation is necessary for speech
data too large to be segmented manually. There are two pri-
mary approaches to segmentation. The homogeneity approach
strives to find the optimal segment boundaries so that the dis-
tortion within each segment is minimized. The ML segmenta-
tion proposed by Svendsen et al. [1] is of this category. The
heterogeneity approach to segmentation makes use of the dis-
similarity between successive segments, which is expected to
be highest at the segment boundaries. The STM approach [2]
is an example of heterogeneity based segmentation. More re-
cent approaches to speech segmentation include MMC (Maxi-
mum Margin Clustering) by Estevan et al. [3] and the usage of
model selection criteria [4]. In [10], Aversano et al. develop
a segmentation method which does not rely on prior knowl-
edge of the phoneme sequence. Qiao et al [5] formulate the
segmentation problem using a probabilistic framework. They
formulate three optimal objective functions for segmentation:
Mean Square Error (MSE), Log Determinant (LD) and Rate
Distortion (RD). In [6], Rasanen et al. propose an improved
quality measure, the R-value to evaluate the performance of un-
supervised speech segmentation algorithms. The difficulty for
segmentation is mainly due to the non-stationarity within the
segments which poses a problem for both homogeneity based
methods as well as heterogeneity based methods. The mixture
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of stochastic models proposed below has the promise of han-
dling non-stationarity better.

The last decade has witnessed a growing interest in anal-
ysis of non-negative data and non-negative signal representa-
tions. Unsupervised learning methods, such as NMF [7] and
PLCA (Probabilistic Latent Component Analysis) [8] have been
successfully applied to a variety of problems such as music
transcription, acoustic source separation, speech and audio de-
noising, spectrogram superresolution and speech dereverbera-
tion [9], [11], [12]. Given a non-negative time-frequency rep-
resentation N (¢, f) of a signal, PLCA decomposes the spectral

distribution P(f|t) = % at each time frame ¢ as a sum

over a set of M latent components:

P(f|t) =Y P(fl2)P(z]t) M

Our motivation in applying the PLCA based decomposition to
the speech segmentation task is to model a speech spectrogram
as a superposition of different segments, where each speech seg-
ment can be modelled by a separate latent component. We note
that unlike in most conventional segmentation algorithms, we
do not make any underlying assumption that the time frames
in each segment are drawn from a parameterized distribution,
such as the Gaussian density. Thus the PLCS framework would
be valid even when the segments are drawn from arbitrary dis-
tributions, or when there are too few frames in each segment
to reliably learn a parameterized distribution. Conventional ap-
proaches to segmentation generally extract relevant frame based
features from the speech signal prior to segmentation. Use
of different sets of features would yield different results, with
MFCCs shown to be the most robust for phoneme segmenta-
tion. In contrast, our method does not involve the extraction of
specialized features. The only input required is a spectrogram
of the signal to be segmented. Features such as LPCCs, MFCCs
and LSFs are not necessarily non-negative, whereas the spectro-
gram is a non-negative signal representation. The spectrogram
is obtained by computing the squared absolute value | S (¢, f)|?
of the STFT (Short-Time Fourier Transform) S, (¢, f) of signal
z(t), which makes it a non-negative representation.

The advantage of imposing the non-negativity constraint is
that the input data is decomposed into a parts based representa-
tion. Speech signals exhibit the phenomenon of coarticulation,
where adjacent segments merge into one another, thus posing
an additional problem to the automated segmentation algo-
rithm. In the proposed framework, the spectral vectors at the
phone boundaries can be modelled as a linear combination of
the preceding and successive segment latent components. This
is facilitated by the non-negative signal representation, which



is additive in nature. Conventional features such as MFCCs
do not follow linear superposition, and hence do not lend
themselves readily to such modeling.

2. Formulation of PLCS

Let the spectrogram of the signal which we wish to segment
into M successive parts be N (¢, f). Lett € {1,2,...,T}
and f € {1,2,..., F'}. Thus we are considering 7" time bins
and F' frequency bins in the TF-representation. Let us treat
the spectrogram as a co-ocurrence matrix of time and fre-
quency (a 2D discrete pmf), ie., let us assume that we have
N ”virtual” observations of time-frequency tuples, of the form
(t1, fr), (t2, f2), (t3, f3),...(t~, fn), where the number of ob-
servations of the tuple (¥, ') out of N observations is given by
N(#, f'). Hence we have:

t=T f=F
N(t, [)=N @)
t=1 f=1

By using the symmetric PLCA model [8], we can express:

S~ P(f]2)P(2]1) 3

z=1

where P(t, f) is the joint probability of time bin ¢ and fre-
quency bin f. If we assume that the N observations of time-
frequency tuples are mutually independent, then the joint likeli-
hood of all L observations is given by:

mi
- @)

In the above relation, we have grouped together all time-
frequency tuples with the same time-frequency bin (¢, f). The
log-likelihood of the data is now given by:

N(t, f)

1=

L= H P(tl’fz
i=1

t) > P(fl2) Pt

i=N f=F
LL=Y > Nt [) |logP(t +logZPf| (z|t)
i=1 f=1 =
®)

2.1. Towards a model for segmentation

Consider the signal to be segmented to have M segments, where
we can model the m-th segment to correspond to a latent basis
P(f|z = m). Let the M segment boundaries be denoted as
{bo, b1, ba, ...., basr—1}, where the m-th segment is in the range
bm-1+1 <t < by,. In this model no attempt is made to
find similarity between segments that are not contiguous. Rep-
etition of a similar segment elsewhere in the signal is consid-
ered a distinct segment and a distinct latent component. The
weighing parameter P(z = m|t) of the segmentation model
is a measure of the degree of excitation of the m-th segment
at the ¢-th time frame. This is well suited for modeling time
frames at phoneme boundaries. For example, consider the k-th
phone segment in an utterance, where it is coarticulated with the
(k — 1)-th segment as well as the (k + 1)-th segment. In Fig-
ure la, we show how our model can enable the spectra P(f|t)
in the region b1 — 0 < t < by + 9 (region of coarticulation) to
be expressed as a convex linear combination of the latent bases
of the (k—1)-th and k-th segments; a similar combination holds

P(z=k-11t) P(z=k|t) P(z=k+1|t)
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Figure 1: Hard vs. soft segment boundary constraints

in the coarticulation region of the k-th and the (k + 1)-th seg-
ments. This is physically intuitive since the spectrogram is an
additive representation when neglecting the cross terms. Con-
ventional features such as MFCCs are non-linear with respect to
their additive signal components and hence do not follow such
a superposition property. However for computational simplic-
ity, we make use of a hard constraint instead of a soft linear
combination, as we shall describe in the next section.

2.2. Incorporating a hard constraint

We impose a hard constraint that the spectra P(f|¢) within the
m-th segment b,,—1 + 1 < t < b, corresponds to only one
latent component, which is the basis P(f|z = m) for the m-th
segment. This is depicted in Figure 1b. Thus, the segmentation
model reduces to:

P(f[t) = P(flz =

The hard constraint restricts the spectra in each segment to be-
long to only one latent component, thus imposing a form of
spectral stationarity within each segment. While this constraint
does not account for coarticulation, it is found to be reasonable
and yields good results when applied to speech data. The ob-
jective function to be maximized now becomes:

Z Z i N(t, flogP(flz=m) ()

m=1t=b,,_1+1 f=1

M)V b1 +1<t<by  (6)

subject to the condition Zle P(f]z = m) = 1. To maxi-
mize the likelihood, we have to solve for the segment bound-
aries {bo, b1, ..., bas } and the latent bases P(f|z = m)V m. It
is straightforward to show that given the boundaries, the “cen-
troid” (latent basis) for the m-th segment is given by:

bm
t:an—1+1 N(t7 f)

an
S e, N )

We can further show that the algorithm strives to minimize the
following cost function in terms of the segment boundaries:

= P(flz=m) = (8)

M

> o

m=1t=b,,_1+1

dspec(t, m) (9)



The distance measure dspec (¢, m) is given by:

f=F
dopec(t,m) = Y =N(t, logpm(f) = N(OH[P(f[t)]|m]
f=1

(10)
H[P(f|¢)||pm] is the cross-entropy between the spectral distri-
bution at time ¢, and the spectral centroid i, = P(f|z = m)
of the m-th segment as obtained from Equation (8). This cross
entropy is weighted by the energy term N (t), which is the
time-marginal of N(¢, f). Even though the energy term ap-
pears in Equation (10), experiments on synthetic data as well
as speech clearly show that it does not aid the segmentation
task by utilizing energy information of each time frame. The
cross-entropy term incorporates the normalized spectral distri-
bution P(f|t) and mean basis pm,, and only the spectral in-
formation is taken here into account. Similar to the approach
in [1], we resort to dynamic programming to solve for the op-
timum segment boundaries. We also impose a condition that
the duration of each speech segment is between dp,in, = 25ms
and dmaez = 200ms, which reduces the complexity of the DP
search procedure.

2.3. Taking energy into account

In the PLCS framework above, we use only the spectral infor-
mation contained in the input spectrogram N (¢, f). However,
the energy information is important for the segmentation task,
especially when marking regions of silences and stops in the
speech signal. We would like to utilize the homogeneity in en-
ergy information also for better segmentation. We propose to
use an energy cost dener(t, m) where

dener(t,m) = (N(t) = Nim)* (1n
ﬁ fgbwﬁl N(t) is the mean en-
ergy of the m-th segment. We note that the spectral dis-
tance dspec(t,m) is of a different order of magnitude than
dener(t,m). Figure 2 shows the distribution of dspec and dener
obtained from a training set of 50 TIMIT sentences. We trans-
form dspec and dener t0 dipe. and d.,.,. respectively so that
the resulting distributions are normalized to zero mean and
unit variance. We modelled the distributions dspec and dener
non-parametrically, and did not use a parameterized distribu-
tion, such as a Gaussian. Parameterized distributions would not
model these distributions well, and would result in a decrease
in performance. The modified cost function to be maximized is
now:

where N,, =

bm

M
> [depee(t;m) + Adener(t,m)]  (12)

m=1t=b,,_1+1

where ) is a tuning parameter designed to give higher weigh-
tage to the spectral variations after the normalization. We have
experimented with a set of 50 TIMIT sentences and found that
A = 0.05 gives the best segmentation performance.

3. Experiments on Speech Data and Results

We perform experiments on the TIMIT corpus to test the ef-
fectiveness of the proposed segmentation framework. The al-
gorithms we have implemented in our experiments are :(1)
PLCS (Probabilistic Latent Component Segmentation) with a
hard boundary constraint (2) PLCS with an energy based cost
(PLCS-E). The performance measures we have used are :(1) %

(a) P(dspec)

() P(dener)

Figure 2: Distributions of P(dspec) and P(dener)

Hit rate (H.R) (2) % Insertion rate (I.R) (3) % Successive seg-
ment hit rate (S.H.R). Following the widely used convention in
the literature [5], [3], we consider an automatic segment to be
a hit only if it lies within 20 ms. of a TIMIT boundary. The
% H.R is the fraction of TIMIT boundaries which have been
correctly detected. % S.H.R denotes the percentage of consec-
utive hits. All experiments were performed on five dialects of
the training set of TIMIT corpus. We have used wideband log-
spectrograms, with a frame shift of 5 ms and a window length
of 20 ms. In all experiments, the target number of segments for
DP search is set equal to that in the TIMIT transcriptions.

Table 1: Performance of PLCS framework

Algorithm | % HR. | % ILR. % S.H.R
PLCS 74.55 27.03 49.6
PLCS-E 76.36 22.75 51.3

The results are reported in Table 1. From the Table, we
observe that the proposed PLCS algorithm and its variant at-
tains an average hit rate of 75.45%, with a mean insertion rate
of 24.89% and a mean successive segment hit rate of 50.45%.
Variant PLCS-E is slightly better than the original PLCS in
terms of a 1.81% increase in segment matches, but has a de-
crease of 4.28% in terms of spurious insertions. Since we have
used the same number of segments as the TIMIT transcription,
our results correspond to an over-segmentation (0.s. rate) of
0%. The Gaussian ML segmentation in [1] yields a hit rate
of 80% with an insertion rate of 21% for no oversegmentation.
In [3], the reported c.d.r (equivalent to % Hit rate) is 76%. In
[10], the reported % match is 73.6% at an o.s. of 0%. In the
STM approach of [2], the authors report 84.6% correctly de-
tected boundaries, of which 89% lie within a margin of 20 ms,
which is equivalent to a hit rate of 75.2%, and an insertion rate
of 28.2%. In [5], the authors report a best performance of 77.5%
using a Rate-Distortion approach. Thus, the PLCS framework
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Figure 3: Spectrogram of a section of a TIMIT utterance with manual (red) and automatic (blue) boundaries superimposed

yields results comparable to the latest state of the art segmenta-
tion algorithms.

In Figure 3, we show the spectrogram of the initial 1.5
seconds of a TIMIT sentence (’she had your dark suit in gr’),
with the manual and automatic boundaries superimposed. It
is observed in Figure 3 that the boundaries corresponding to
the start of closures \dcl\and \gcl\, the fricatives \jh\and \s\,
the nasal \n\, and the semivowels \r\and \axr\are very close
to the TIMIT boundaries. The algorithm groups \iy\hv\and
\t\ix\into a single segment. Overall, the boundaries are very
similar to that obtained by a visual inspection of the spectro-
gram.

To obtain a better insight into the PLCS framework, we
have grouped all TIMIT phones into six broad categories : Stop
Consonants (C), Fricatives (F), Nasals (N), Semivowels (SV),
Vowels (V), Pause/Silence (P) and presented the proportion of
boundaries correctly detected (for one TIMIT dialect) for differ-
ent classes of preceding and following segments in Table 2. It is
observed that PLCS achieves high accuracy for dissimilar seg-
ment classes, such as vowel-consonant and vowel-nasal bound-
aries. Even for similar classes, such as vowel-vowel boundaries,
the boundary detection accuracy is over 50%. Modeling coar-
ticulation in the PLCS framework would be expected to further
increase accuracy.

Table 2: Boundary Detection Accuracy for different phone
classes (best entries in the table are shaded)

Class Ct Ft Nt S‘/t V; Pt
C 3 133 39 203 615 27
t—1 1 227 56 253 859 76
F 85 | 18 | 32 | 8L | 570 | 93
t—1 189 40 32 92 650 141
N 164 | 84 | 8 | 17 | 233 | 21
t—1 202 97 15 31 278 34
SV, 7 44 14 23 444 8
t—1 81 16 20 12 717 11
vV, 778 563 418 233 111 50
t—1 911 624 495 428 195 76
P 81 | 66 | 30 | 47 | 24 -
t—1 88 110 39 71 30

4. Conclusions

We have proposed a novel segmentation framework, based on
Probabilistic Latent Component Analysis (PLCA) which is fun-
damentally different from existing parametric pdf-based seg-
mentation schemes. The framework is based on the probabilis-
tic decomposition of a non-negative signal representation which
can also model coarticulation between successive phonemes.
Using a hard constraint on the segment boundaries to simplify
the framework, a DP-search based procedure is employed to
solve for the segment boundaries. Performance is further im-
proved by adding an energy cost to the objective function. Ex-

periments on speech data from the TIMIT corpus show re-
sults comparable to contemporary results in the literature. The
present work can be extended to incorporate soft constraints on
the boundaries, and to speaker segmentation, where each seg-
ment can be modelled as a mixture of latent components.
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